Implement row-level security in BigQuery with Camel.
BigQuery doesn’t support dynamic session variables like PostgreSQL or ClickHouse. Instead, it uses row access policies based on the authenticated user’s identity. To implement per-user RLS with Camel, you’ll need to create separate connections with different credentials.
BigQuery RLS requires managing multiple service accounts or user credentials, which adds complexity compared to PostgreSQL and ClickHouse implementations.
# Create service accounts for each tenantgcloud iam service-accounts create tenant-a-reader \ --display-name="Tenant A Data Reader"gcloud iam service-accounts create tenant-b-reader \ --display-name="Tenant B Data Reader"# Generate keysgcloud iam service-accounts keys create tenant-a-key.json \[email protected]gcloud iam service-accounts keys create tenant-b-key.json \[email protected]
-- Policy for Tenant ACREATE ROW ACCESS POLICY tenant_a_policy ON `project.analytics.events` GRANT TO ("serviceAccount:[email protected]") FILTER USING (tenant_id = 'tenant_a');-- Policy for Tenant BCREATE ROW ACCESS POLICY tenant_b_policy ON `project.analytics.events` GRANT TO ("serviceAccount:[email protected]") FILTER USING (tenant_id = 'tenant_b');
# Grant BigQuery data viewer role to service accountsgcloud projects add-iam-policy-binding project \ --member="serviceAccount:[email protected]" \ --role="roles/bigquery.dataViewer"gcloud projects add-iam-policy-binding project \ --member="serviceAccount:[email protected]" \ --role="roles/bigquery.dataViewer"
Test your policies by impersonating different service accounts:
Copy
Ask AI
# Authenticate as Tenant A service accountgcloud auth activate-service-account \ --key-file=tenant-a-key.json# Query should only return Tenant A databq query --use_legacy_sql=false \ 'SELECT * FROM `project.analytics.events`'# Switch to Tenant Bgcloud auth activate-service-account \ --key-file=tenant-b-key.json# Query should only return Tenant B databq query --use_legacy_sql=false \ 'SELECT * FROM `project.analytics.events`'